Spherically Symmetric Charge Densities

Consider volume charge densities $\rho_{v}(\bar{r})$ that are functions of spherical coordinate ronly, e.g.:

$$
\rho_{v}(\bar{r})=\frac{1}{r^{2}} \quad \text { or } \quad \rho_{v}(\bar{r})=e^{-r}
$$

We call these types of charge densities spherically symmetric, as the charge density changes as a function of the distance from the origin only (i.e., is independent of coordinates θ or ϕ).

As a result, the charge distribution in this case looks sort of like a "fuzzy ball", centered at the origin!

Using the point form of Gauss's Law, we find the resulting static electric field must have the form:

$$
E(\bar{r})=E(r) \hat{a}_{r} \quad\left(\text { for spherically symmetric } \rho_{v}(\bar{r})\right)
$$

Think about what this says. It states that the resulting static electric field from a spherically symmetric charge density is:

* A function of spherical coordinate ronly.
* Points in the direction \hat{a}_{r} (i.e., away from the origin at every point).

As a result, we can use the integral form of Gauss's Law to determine the specific scalar function $E(r)$ resulting from some specific, spherically symmetric charge density $\rho_{r}(\bar{r})$.

Recall the integral form of Gauss's Law:

$$
\begin{aligned}
\oiint_{s} E(\bar{r}) \cdot \overline{d s} & =\frac{Q_{e n c}}{\varepsilon_{0}} \\
& =\frac{1}{\varepsilon_{0}} \iiint_{V} \rho_{v}(\bar{r}) d v
\end{aligned}
$$

Consider now a surface S that is a sphere with radius r, centered at the origin. We call this surface the Gaussian Surface for spherically symmetric charge densities.

To we why, we integrate over this Gaussian surface and find:

$$
\begin{aligned}
\oiint_{s} E(\bar{r}) \cdot \overline{d s} & =\int_{0}^{2 \pi} \int_{0}^{\pi} E(\bar{r}) \cdot \hat{a}_{r} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} E(r) \hat{a}_{r} \cdot \hat{a}_{r} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& =E(r) r^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \\
& =4 \pi r^{2} E(r)
\end{aligned}
$$

Therefore, from Gauss's Law, we get:

$$
4 \pi r^{2} E(r)=\frac{Q_{e n c}}{\varepsilon_{0}}
$$

Rearranging, we find that the function $E(r)$ is:

$$
E(r)=\frac{Q_{e n c}}{4 \pi \varepsilon_{0} r^{2}}
$$

The enclosed charge $Q_{\text {enc }}$ can be determined for a spherically symmetric distribution (a function of ronly!) as:

$$
\begin{aligned}
Q_{e n c} & =\iiint_{V} \rho_{v}(\bar{r}) d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{r} \rho_{v}\left(r^{\prime}\right) r^{\prime 2} \sin \theta d r^{\prime} d \theta d \phi \\
& =4 \pi \int_{0}^{r} \rho_{v}\left(r^{\prime}\right) r^{\prime 2} d r^{\prime}
\end{aligned}
$$

Therefore, we find that the static electric field produced by a spherically symmetric charge density is $E(\bar{r})=E(r) \hat{a}_{r}$, where the scalar function $E(r)$ is:

$$
\begin{aligned}
E(r) & =\frac{Q_{\text {enc }}}{4 \pi \varepsilon_{0} r^{2}} \\
& =\frac{1}{\varepsilon_{0} r^{2}} \int_{0}^{r} \rho_{v}\left(r^{\prime}\right) r^{\prime 2} d r^{\prime}
\end{aligned}
$$

Or, more specifically, we find that the static electric field produced by some spherically symmetric charge density $\rho_{v}(\bar{r})$
is:

$$
\begin{aligned}
\mathrm{E}(\bar{r}) & =\frac{Q_{e n c}}{4 \pi \varepsilon_{0} r^{2}} \hat{a}_{r} \\
& =\frac{\hat{a}_{r}}{\varepsilon_{0} r^{2}} \int_{0}^{r} \rho_{\nu}\left(r^{\prime}\right) r^{\prime 2} d r^{\prime}
\end{aligned}
$$

Thus, for a spherically symmetric charge density, we can find the resulting electric field without the difficult integration and evaluation required by Coulomb's Law!

